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Abstract

Functional diffusion map (fDM) has been recently re-

ported as an early and quantitative biomarker of clinical

brain tumor treatment outcome. ThisMRI approach spa-

tially maps and quantifies treatment-induced changes

in tumor water diffusion values resulting from altera-

tions in cell density/cell membrane function and micro-

environment. This current study was designed to

evaluate the capability of fDM for preclinical evaluation

of dose escalation studies and to determine if these

changes were correlated with outcome measures (cell

kill and overall survival). Serial T2-weighted and diffu-

sion MRI were carried out on rodents with orthotopi-

cally implanted 9L brain tumors receiving three doses

of 1,3-bis(2-chloroethyl)-1-nitrosourea (6.65, 13.3, and

26.6 mg/kg, i.p.). All images were coregistered to base-

line T2-weighted images for fDM analysis. Analysis of

tumor fDM data on day 4 posttreatment detected dose-

dependent changes in tumor diffusion values, which

were also found to be spatially dependent. Histologic

analysis of treated tumors confirmed spatial changes in

cellularity as observed by fDM. Early changes in tumor

diffusion valueswere found tobehighly correlativewith

drugdoseand independentbiologicoutcomemeasures

(cell kill and survival). Therefore, the fDM imaging

biomarker for early prediction of treatment efficacy can

be used in the drug development process.
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Introduction

The large number of watermolecules containedwithin tumor

tissues provides an important opportunity to quantify their

respective random trajectories (i.e., diffusion or Brownian

motion) for use as a noninvasive microscopic probe to as-

sess changes in tumor cell membrane integrity following

treatment intervention. This can be accomplished based

on the use of diffusion magnetic resonance imaging (MRI)

pulse sequences, which allows for three-dimensional tumor

images where the MR signal is dependent on the mobility of

water molecules within the tissue of interest [1]. Water can

reside within an intracellular compartment, where it is in a more

restricted environment relative to the extracellular compart-

ment; thus, intracellular water has lower apparent watermobility

(diffusion value). Changes in the ratio of the extracellular to

intracellular compartmental volumes (Ve/Vi) will significantly

affect the overall mobility of water within that measured tis-

sue region on the diffusionMR image. Treatment of a tumor with

an effective cytotoxic agent will result in an increase in the value

of the Ve/Vi ratio due to loss of cell membrane integrity and

subsequent loss in overall cellular density. Relative tissue

contrast on diffusion tumor maps is directly related to diffusion

values for each voxel in the image; therefore, the overall net

effect of a successful treatment would be an increase in the

fractional volume of the interstitial space, resulting in an in-

crease in water diffusion.

The application of diffusion MRI for the detection of early

tumor treatment response was first reported using a rodent gli-

oma model [2]. Subsequent publications have verified and ex-

panded this initial report using several different tumor models

and therapeutic agents [3–27]. Taken together, these studies

have shown that diffusion MRI is a sensitive biomarker that

is capable of detecting early cellular changes in treated tumors,

which precede macroscopic volumetric response. In addition, it

was also reported that diffusion MRI is a sensitive technique

that allows for the identification of spatially distinct regional

responses to therapy within tumor tissues [13,14,16–18,20].

Until recently, animal studies compared the mean apparent

diffusion coefficient (ADC) value from the entire tumor mass

posttherapy to the baseline (pretreatment) mean ADC value.

However, the response of ADC to cytotoxic therapy in the

clinical setting was found to be more complex due to heteroge-

neity observed within human tumors [11]. During the treatment

of patients with malignant brain tumors, it was shown that

diffusion changes could both increase (loss of intracellular
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space) and decrease (increase in intracellular space) over

time within the same tumor volume, especially for treatments

with modest efficacy [11,28]. This complicated response

scenario rendered the use of the mean change in overall

tumor ADC values less sensitive due to opposite and com-

peting effects. This observation required the development of

a new approach that could provide for the separation and

quantification of these competing changes. The idea was that

the Ve/Vi ratio could either increase or decrease during tumor

treatment; thus, both of these events required identification

within the diffusion image. To this end, functional diffusion

map (fDM) was developed as a statistical approach for

segmenting tumors based on a defined threshold of ADC

change following therapy [28].

Results from patients with primary malignant brain tumors

were analyzed using the fDM approach, which revealed that

the volume of fDM response had a strong correlation with

the overall clinical response based on the World Health Or-

ganization response criteria [28]. A more recent study [29],

wherein patients with grade III/IV gliomas were analyzed

using fDM, revealed that fDM could be used to stratify pa-

tients as responsive or nonresponsive to therapy in as early

as 3 weeks into a 6-week to a 7-week fractionated therapy

schedule. In this study, patients identified by fDM as non-

responsive had significantly poorer survival and time-to-

progression than patients identified as responsive [29]. Thus,

fDM has emerged as a predictive biomarker for the early

stratification of tumor response before therapy completion.

The purpose of this current study was to evaluate fDM as

an early, sensitive, and predictive tumor imaging biomarker in

the preclinical setting using a rodent gliomamodel. This study

is vitally important as it provides an opportunity to further as-

sess the fDM approach using a well-controlled experimental

tumor model.

The sensitivity of fDM was assessed by quantifying dif-

fusion changes in rat 9L tumors treated with different doses

of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)—a cytotoxic

drug often used clinically for the treatment of malignant gli-

omas. Three-dimensional fDM maps were computed from

MRI data obtained from individual animals pretherapy and

posttherapy. Analysis of tumor fDM data as early as 4 days

posttreatment was found to detect dose-dependent changes

in ADC maps. In addition, these changes were also found to

be spatially dependent and were found to correlate with his-

tologic changes in tumor cell density. These early treatment–

induced changes in tumor diffusion properties were also

found to be highly correlated with drug dose and animal

survival, suggesting that fDM is a valid early predictive bio-

marker for treatment efficacy. The fDM biomarker has poten-

tially broad applications in preclinical drug development and

in the individualization of cancer patient management.

Materials and Methods

Intracranial Tumor Implantation

All animal works were carried out in the animal facility of

the University of Michigan (Ann Arbor, MI) in accordance with

federal, local, and institutional guidelines. Intracerebral brain

tumors were implanted in male Fischer 344 rats (Charles

River Breeding Laboratories, Wilmington, MA) weighing

between 125 and 150 g. Animals were anesthesized by

intraperitoneal administration of a ketamine (87 mg/kg)/

xylazine (13 mg/kg) mixture. A small skin incision was made

over the right hemisphere, and a 1-mm-diameter burr hole

was drilled through the skull. A sterile suspension of 1 � 105

9L cells in 5 ml of serum-free medium was introduced through

a 27-gauge needle inserted to a depth of 3 mm. Rats were

allowed to recover after filling the burr hole with bone wax

and suturing the skin closed.

Chemotherapy

Thirty-three animals with 9L tumors were entered into the

study. When in vivo tumor volumes had reached 20 to 60 ml,
animals were divided into four groups. Group 1 received

0.1 ml of drug vehicle (10% ethanol) and was used as a con-

trol group (n = 7). Groups 2 to 4 received 6.65 mg/kg BCNU

(n = 7), 13.3 mg/kg BCNU (n = 11), and 26.6 mg/kg BCNU

(n = 8), respectively, diluted in 10% ethanol. All treatments

were administered by a single intraperitoneal injection on

day 0. T2-weighted (T2, MRI transverse relaxation time) and

diffusion MRI were performed every other day posttherapy

tomeasure volumetric and cell density changes, respectively.

Animal survival data were also obtained for all groups.

Diffusion MRI

Maps of tumor ADC values were acquired every other

day up to 14 days posttherapy using a previously described

method [11]. Briefly, a trace diffusion–weighted multislice

spin echo sequence (with motion compensation and naviga-

tor echo) was used to acquire 13 slices with two different

diffusion weightings [b1 = 100 sec/mm2; b2 = 1248 sec/mm2;

image slice thickness = 1 mm; image matrix = 128 � 128

(0–256); field of view = 30 � 30 mm; echo time = 60 milli-

seconds]. During all MRI procedures, the animals were anes-

thesized with 1.5% isoflurane, and body temperature was

maintained at 37jC using a heated water-recirculating pad.

The images acquired with b1 were essentially T2-weighted

images, and these were used to segment the tumor from

the normal brain for volumetric analysis using an ‘‘in-house’’

region drawing tool developed in MATLAB (Natick, MA).

Image Registration and fDM

An important part of fDM analysis is the registration of

parametric ADCmaps acquired posttherapy to baseline ADC

maps acquired before treatment. Image registration was

performed using an automated linear affine coregistration

algorithm (MIAMI Fuse; University of Michigan, Ann Arbor,

MI) to maximize mutual information between the two tempo-

rally distinct three-dimensional data sets [30]. Following

registration and tumor segmentation of voxels within the

tumor both at baseline and on day 4, fDM statistics were

calculated. Firstly, ADC values of voxels posttherapy were

plotted as a function of baseline ADC values. These tumor

voxels were then further segmented into three regions based

on an upper threshold and a lower threshold of ADC change.
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That is, tumor voxels that had increased ADC above the

upper threshold were region 1 (VR, red voxels), voxels that

had decreased below the lower threshold were region 2 (VB,

blue voxels), and all other voxels were region 3 (VG, green

voxels). A comparison between treatment groups and the

measurement of fDM dose dependence was accomplished

to optimize the sensitivity of the thresholds used (±0.4 �
10�9 m2/sec). Normalized volumes were then calculated for

each animal, and group statistics were calculated.

Histopathology

In a separate study consisting of eight animals, two ani-

mals per treatment group were imaged pretreatment and

again at 6 to 7 days posttherapy. Following the second im-

aging session, animals were euthanized, and the brains were

fixed in 10% paraformaldehyde. After 48 hours, fixed tissues

were transferred to 70% ethanol and embedded in paraffin.

Formalin-fixed paraffin-embedded specimens were serially

sectioned and slide-mounted. Sections were stained with

hematoxylin and eosin (H&E) and compared to fDMs. This

was accomplished to identify underlying histologic changes

associated with observed regional alterations in fDMs.

Tumor Cell Kill Calculations and Statistical Analysis

The quantification of tumor cell kill from serially volumetric

imaging data for each animal was accomplished as pre-

viously described [31]. In brief, log(cell kill) = log10[Vpre/Vpost],

where V represents the tumor volume fromMRI. Linear least

squares analysis was used to measure the statistical signifi-

cance of trends in the BCNU dose dependence of fDM vol-

ume, animal survival, and log cell kill, and in the correlation of

fDM response with survival and cell kill. When two groups

were compared, a one-tailed Student’s t test was used.

Both linear least squares and Student’s t test were performed

using Microsoft Excel (Microsoft, Redmond, WA). To com-

pare the median survival of all four animal groups, a log rank

test was performed using Prism (GraphPad Software, Inc.,

San Diego, CA).

Results

Objective assignment of threshold-defining fDM regions is

required to provide optimal sensitivity for the detection of

therapy-induced changes. In this study, the normalized tumor

volume of region 1 (VR) was plotted (Figure 1a) as a function

of decreasing upper threshold for the four groups of ani-

mals investigated. Analysis of these data revealed that upper

thresholds of 0.2 � 10�9, 0.3 � 10�9, and 0.4 � 10�9 m2/sec

were all able to statistically differentiate between the three

treatment groups, and between the treatment groups and

the control group. At these thresholds, based on a one-tailed

t test,VRwas statistically different (P < .05) for all groups, with

VR being greater for the 26.6-mg/kg, 13.3-mg/kg, 6.65-mg/

kg, and control groups. In contrast, the same plot for the

lower threshold (Figure 1b) revealed that there was no sta-

tistical difference (P > .05) between the normalized volume of

region 2 (VB) for the control and the 6.65-mg/kg groups,

the 6.65- and the 13.3-mg/kg groups, or the 13.3- and the

26.6-mg/kg groups. However, the higher VB values of control

animals were found to be statistically significant (P < .05)

compared to the 13.3- and 26.6-mg/kg animals for thresholds

of �0.1 � 10�9 and �0.2 � 10�9 m2/sec. To minimize the VR

and VB volumes of the control group while maintaining sen-

sitivity to treatment-induced changes, a threshold of ±0.4 �
10�9 m2/sec was used to identify/segment the three fDM

regions for all fDM images, scatter plots, and subsequent

statistical comparisons with outcome efficacy measures.

Functional diffusion mapping is a spatial mapping tech-

nique that segments diffusion MRI voxels within a tumor into

three distinct regions of diffusion change. Region 1 consists

of voxels wherein the change in ADC values from baseline to

posttherapy was greater than an upper threshold. These

regions are shown as red pixels on fDM images (Figure 2,

a, c, e, and g) and as red data points on fDM scatter plots

(Figure 2, b, d, f, and h). Region 2 represents voxels in which

the ADC change was less than a lower threshold and is

shown as blue pixels on fDM images and as blue data points

on scatter plots (Figure 2). Region 3 comprises voxels for

which ADC change was within the two thresholds and is

shown as green pixels and data points in Figure 2. These

examples of fDM images and scatter plots were taken from

a representative animal from each of the groups on day 4

posttreatment. The control tumor example (Figure 2, a and b)

Figure 1. fDM region volumes as a function of fDM threshold for the different

treatment groups. (a) The change in VR as a function of the upper threshold of

ADC change (m2/sec). (b) The change in VB as a function of the lower

threshold of ADC change (m2/sec). The bars represent the mean VR and VB

for each group at a given threshold, and the error bars represent the standard

error of the mean.
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Figure 2. Representative fDM maps and fDM scatter plots for each treatment group. The animals were treated with: (a and b) 0 mg/kg (control); (c and d) 6.65 mg/

kg BCNU; (e and f) 13.3 mg/kg BCNU; (g and h) 26.6 mg/kg BCNU. Images of fDMs (a, c, e, and g) reveal red voxels, which are regions with significant increases in

ADC, and blue voxels, which are regions within the tumor with significantly decreased ADC values. The green voxels are tumor regions wherein the ADC values did

not change (over the defined threshold level of ±0.4 � 10�9 m2/sec) over 4 days following treatment. Scatter plots corresponding to the fDM are voxel ADC values

posttreatment ( y-axis) as a function of the baseline (time 0) ADC value (x-axis).
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demonstrates how these tumors contained mostly region 3

voxels over this time frame, with the detected changes of VR

and VB representing only 2.9% and 5.7% of the total tumor

volume, respectively. However, the 6.65-mg/kg tumor shown

in Figure 2, c and d, contained responding voxels of VR =

7.7% and VB = 2.6%, respectively. The mean VR (10.6 ±

2.8%) and the mean ADC change (10.7 ± 2.2) for this group

were statistically significantly higher (P < .05) than those

for the control animals (VR = 3.9 ± 1.7; DADC = �0.8 ±

2.7%). For animals treated with 13.3 mg/kg BCNU, as shown

on the fDM image (Figure 2e) and scatter plots (Figure 2f ),

the responding region VR (30%) was greater than for both

the control and the 6.65-mg/kg–treated animals. The mean

VR (28.7 ± 8.0) and DADC (22.9 ± 5.3%) were both statisti-

cally greater (P < .05) than the values for the 6.65-mg/kg–

treated group. In the case of the 26.6-mg/kg BCNU–treated

group (Figure 2, g and h), most of the voxels contained within

the tumor mass had increased diffusion values above the

threshold (VR = 90.6%), with only 0.3% VB voxels. The group

mean VR (62.0 ± 9.0%) and the mean ADC change (49.0 ±

9.7%) were both statistically greater (P < .05) than those for

the 13.3-mg/kg–treated group.

Traditional measures of brain tumor treatment efficacy

were also evaluated in this study. Figure 3a shows a survi-

val plot for all groups of animals, revealing that there was a

dose-dependent increase in animal survival relative to the

control group. Using a log rank test, all groups had a statis-

tically significant difference in median survival posttherapy

(P< .05). In addition, normalized tumor volumeat 4 days post-

treatment displayed a decreasing trend with increasing

dose of BCNU (Figure 3b). Although the groups were not all

statistically different, the results of a linear least squares fit

showed that the slope was statistically significant (P < .05).

Lastly, log cell kill (Figure 3c) showed an increasing statistical

trend (P < .05) with dose, although the 6.65-mg/kg group

(�0.25 ± 0.08) was not statistically greater (P > .05) than the

control group (�0.09 ± 0.04). The log cell kill values of the

13.3-mg/kg (1.28 ± 0.18) and the 26.6-mg/kg (3.22 ± 0.51)

groups were both statistically different (P < .001) from each

other and from the control group.

The dose dependence of fDM based on the group means

(±SEM) forVR andVB valueswas also calculated. Figure 4 is a

plot of VR and VB as a function of drug dose (mg/kg). The re-

sulting ‘‘best-fit’’ gradient (2.30 ± 0.40 kg/mg) revealed that VR

was linearly correlated extremely well (P = 5.8 � 10�6) with

BCNU dose. In contrast, VB revealed very little correlation

(P = .87) with drug dose. Based on these results, it was ap-

parent that, for treatment of the 9L tumor with BCNU, the fDM

parameter that was most sensitive to drug-induced cellular

changes was VR. This parameter was then used for the sta-

tistical evaluation of fDM with additional outcome measures.

The ability of fDM to predict subsequent therapeutic out-

come, as quantified by overall animal survival, was eval-

uated. Figure 5 displays a plot of percent fDM change

(using the parameter VR) versusmean animal survival (days

posttreatment). The resulting gradient (1.55 ± 0.44, P = .002)

Figure 3. Dose dependence of traditional therapeutic efficacy measures. (a) Kaplan-Meier animal survival plots of animals treated with: (1) 0 mg/kg, (2) 6.65 mg/

kg, (3) 13.3 mg/kg, and (4) 26.6 mg/kg BCNU. The median survival for these groups was 7, 13, 23.5, and 35.5 days posttherapy, respectively. All groups were

significantly different, as determined by log rank test (P < .05). (b) Normalized tumor volume at the time fDM analysis was performed (4 days) posttreatment

with BCNU as a function of dose. The gradient of the least squares fit was �4.0 ± 1.3 (P = .004), and the intercept was 290 ± 20 (P = 1.4 � 10�14). (c) Log cell kill

of the 9L tumor cells as a function of BCNU dose. The gradient of the least squares fit was 0.013 ± 0.02 (P = 3.7 � 10�9), and the intercept was �0.53 ± 0.21

(P = .02). The error bars represent the standard error of the mean for each group.
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showed that VR correlated very well with overall animal

survival. This finding strongly supports the use of fDM as a

biomarker that is capable of predicting early the overall out-

come (survival) following treatment administration.

The fDM approach provides interesting spatial information

not provided for in themean change in ADC approach.We in-

vestigated the underlying histologic basis for the observed

changes in the detected VR and VB fDM regions. Figure 6a

displays an fDM color overlay on its corresponding ana-

tomic image, which was acquired following treatment with

6.67 mg/kg BCNU. Histologic evaluation of the tumor section

prepared from this image region was undertaken. A magni-

fied view of the histologic section of the low-diffusion (VB)

region (high restriction of watermobility) is shown (Figure 6b).

This region was found to have very high cellular density.

In fact, this region contained 153 active mitoses as counted

from 10 high-power fields (original magnification, �40 objec-

tive lens). This is reflective of a region with a very high rate of

cellular proliferation. In distinct contrast, the region identified

by fDM as having very low restricted water diffusion (VR) was

identified by histology to have moderate cellular density.

This region was found to have a lower level of cellular pro-

liferation (96 mitoses in 10 high-power fields) than the VB re-

gion (Figure 6c).

Discussion

Biomarkers that are sensitive to treatment-induced changes

are actively being sought to confirm drug activity or to pre-

select those patients who are more likely to respond to

treatment. An imaging biomarker for this should be capable

of detecting relevant drug-induced changes within a tumor.

The successful identification and validation of an imaging

biomarker that could provide early prediction of treatment

outcome would potentially revolutionize cancer drug devel-

opment and the clinical management of oncology patients.

Furthering the urgency of this need is the fact that, after

20 years of research, the clinical benefits of drugs designed

to exploit cancer gene-based targets display a significant im-

pact. However, targeted therapies cannot be optimally de-

veloped using approaches designed for more traditional

cytotoxic chemotherapies, as the maximum tolerated dose

may not indicate optimal dose; dose-limiting toxicity may

not be proliferation-linked, and myelosuppression side ef-

fects cannot be used as surrogate markers of cytotoxicity

because many of these effects do not deplete blood cells.

These facts highlight the urgent need to find and develop

pharmacodynamic and prognostic markers to establish opti-

mal dosing and to confirm that new agents have their desired

biochemical effects. An imaging biomarker revealing that cell

death occurs in a solid tumor, for example, can demonstrate

that an experimental agent kills tumor cells without the long

delay traditionally required to reach a clinical endpoint.

Nonimaging-based biomarkers are used by two methods.

The first approach uses prognostic markers that are pref-

erably identified through DNA microarrays that match new

classes of drugs with the molecular profile of an individual

tumor. If a drug is targeted specifically against cells that

have a particular mutation, translocation, or gene overex-

pression, then testing tumor tissues to determine whether

Figure 4. Dose dependence of detectable changes in fDM parameters VR

and VB. (a) Mean normalized volume VR (%) as a function of BCNU dose. The

gradient of the least squares fit was 2.30 ± 0.40 (P = 5.8 � 10�6), and

the intercept was �1.1 ± 6.2 (P = .87). (b) Mean normalized volume VB as

a function of BCNU dose. The gradient of the least squares fit was �0.10 ±

0.07 (P = .17), and the intercept was 4.5 ± 1.1 (P = .005). The error bars rep-

resent the standard error of the mean for each group.

Figure 5. Correlation of fDM VR changes with animal survival and cell kill. (a) VR volumes calculated 4 days post-BCNU therapy are plotted as a function of the

median survival for each of the treatment groups. The error bars represent the standard error of the mean for each group. The gradient of the least squares fit was

1.55 ± 0.44 (P = .002), and the intercept was �6.2 ± 9.8 (P = .53). (b) Change in percent fDM versus log cell kill measured using MRI tumor volume measurements

over time.
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such molecular profile is present in a tumor may help clini-

cians avoid prescribing ineffective treatments. The second

method uses pharmacodynamicmarkers that are designed to

provide information as to whether a drug is manifesting its

intended biochemical effect, and, if so, to what extent. In the

long term, these pharmacodynamic effects could be used as

surrogate markers for clinical response. However, these

nonimaging-based approaches use tissue specimens and,

as such, do not take into account the tremendous heteroge-

neity exhibited by tumors. Moreover, different agents will

target different molecular sites within the tumor, thus poten-

tially requiring a plethora of biomarkers, with each requiring

independent validation.

A noninvasive imaging approach is preferred because

imaging is sensitive and minimally invasive, and can provide

multidimensional multislice images with exquisite resolution

at multiple time points. Initial diffusion MRI Clinical Studies

have revealed that treatment-induced changes could be

observed within tumors [11,33–37]. The functional diffu-

sion mapping approach evaluated in this study is an in vivo,

translatable, quantifiable, noninvasive multislice imaging

biomarker, which was shown to be very sensitive to early

therapy-induced alterations in tumor cell membrane integrity

[28,29]. Thus, the use of changes in tumor water diffusion as

biomarker for microscopic changes associated with success-

ful treatment intervention provides an important opportunity

for assessing a broad range of drugs.

An important aspect of translating any biomarker is that it

undergoes adequate validation and should correlate with

biologically relevant endpoints. In this current study, the dose

response of fDM in brain tumors was compared to traditional

endpoints, including tumor growth, cell kill, histopathology,

and animal survival. Compared to tumor volume and cell kill

measures of outcomes that had significant trends but no

statistical differences between vehicle control and 6.65-mg/

kg–treated animals, fDM was shown to be a superior mea-

surement of treatment efficacy (Figure 3, b and c).

An excellent correlation of fDM response with increasing

BCNU dose (Figure 4a) and the significant differences in

fDM-measured responses between all dosage groups were

shown. The ‘‘gold standard’’ of efficacy measures in ortho-

topic experimental tumor models has traditionally been ani-

mal survival. In this current study, we found fDM response

quantified at 4 days posttreatment to be highly correlated

with animal survival and cell kill (Figure 5, a and b). Perhaps

one of the most interesting findings was that the low dose

(6.65mg/kg) was barely effective as it only increased survival

by an average of 5.5 days; however, fDM was, in fact, sen-

sitive enough to detect a significant difference from the con-

trol group of animals and from higher treatment doses. Thus,

the excellent correlation of fDM change with animal survival

outcome provides compelling evidence that this is a valid bio-

marker for the early detection and prediction of biologically

relevant outcome measures (survival and cell kill). Further-

more, fDM was recently shown to be able to stratify thera-

peutically responsive glioma patients from nonresponsive

patients in as early as 3 weeks into a 6-week to a 7-week

treatment schedule [29]. These data revealed that fDM could

identify early patients who are prone to having significantly

poorer survival and time-to-progression from those patients

whowould have amuchmore responsive outcome [29]. These

data, along with clinical results, reveal that fDM can be ef-

fectively used as a predictive biomarker for the early strati-

fication of tumor response before completion of therapy in

both preclinical and clinical oncology studies.

An important aspect of fDM is that it maintains spatial im-

aging information, thus providing it with an exciting advantage

over other possible biomarker approaches, such as geno-

mic and proteomic approaches. This is a particular advantage

given that treatment response can be extremely hetero-

geneous due to a variety of reasons, such as differential drug

delivery and spatially varying heterogeneity in tumor pheno-

type expression levels. The advantage of this is quite evi-

dent as revealed in this histologic assessment (Figure 6) of

Figure 6. Histologic evaluation of fDM VR and VB regions. (a) A representative fDM image of a 9L tumor showing a heterogeneous response to BCNU (6.65 mg/kg)

treatment. The fDM image revealed regions of high (blue) and low (red) restriction of diffusion. (b) H&E-stained slice from a region identified as an fDM (VB) region

of restricted diffusion. This region of high tumor diffusional restriction contained decreased amounts of extracellular space, as shown in the H&E image. In addition,

this region was found to contain 153 mitoses in 10 high-power fields (original magnification, �40 objective lens), reflecting a high rate of proliferation. (c) A region of

low restriction (VR) is shown to have a moderate level of cellular density, as shown in the H&E image. This region contained 96 mitoses in 10 high-power fields,

reflecting mitoses that are fewer than those in the previous region (VB).

A Biomarker for Quantitation of Early Cancer Treatment Outcome Moffat et al. 265

Neoplasia . Vol. 8, No. 4, 2006



different fDM regions (VR and VB). These data revealed that

VR correlated with a region of significant treatment-induced

cell death. However, foci of tumor regions undergoing rapid

cellular proliferation were also detected by VB as regions

of greatly reduced water mobility, confirmed by histology

as focal regions of high cell density along with high mitotic

index. These regions of increased proliferation were not ob-

served with higher doses of BCNU treatment (Figure 2, e–h).

In fact, the increased dose had an additional effect of increas-

ing the overall percentage of the VR region and of shifting

the distribution of green voxels to a higher level (on average),

as shown on scatter plots (Figure 2, f and h). This indicates

that a dynamic shift in the overall tumor cytoarchitecture to-

ward a loss of cell density/membrane integrity occurred fol-

lowing treatment.

In this study, it has been shown that fDM is a viable, quan-

tifiable, and early imaging biomarker of treatment response,

as it was shown to correlate with traditional biomarkers of

efficacy such as survival and cell kill. The advantages of fDM

include the following: 1) acquisition of this imaging data can

be accomplished rapidly (in seconds); and 2) it provides a

much more timely readout over traditional outcome mea-

sures. The ability to rapidly assess efficacy following treat-

ment initiation provides an important opportunity to more

rapidly evaluate drug dosages and combinations in pre-

clinical studies. Moreover, because fDM is a translatable

technique, inclusion of fDM in phase 1 and 2 clinical trials

would provide a sensitive means to detect treatment efficacy,

which is especially valuable in dose escalation protocols.

Furthermore, fDM provides the potential to truly individu-

alize patient treatment regimens through unbiased quantiza-

tion of early treatment response. This has tremendous clinical

significance as it could facilitate early identification of pa-

tients who are nonresponsive to a specific intervention and

thereby provide more time to try alternative therapies. Utili-

zation of fDM in this fashion would be an invaluable and

cost-effective approach for managing individual patients

undergoing anticancer treatment. Further impact could be

seen in improvements in patients’ quality of life and extension

of overall survival.

In conclusion, this study has validated fDM as an imag-

ing biomarker in a preclinical tumor model. Although this

approach should be further examined in additional tumor

models, we have shown clearly the power of using fDM as

a biomarker for the early detection of cancer treatment

response in the 9L model. The important properties of this

in vivo imaging biomarker include the following: its trans-

latability to the clinical setting [28,29]; its quantitative na-

ture, which is independent of the manufacturing of the MRI

instrument and of magnetic field strength; the close cor-

relation with primary biologic endpoints, including overall

histology, cell kill, and survival; and its ease of use and cost-

effectiveness. These results provide an important foundation

for using diffusion MRI to individualize the treatment of cancer

patients. Data presented in this study provide compelling

evidence for the need to rapidly advance the application of

diffusion MRI and fDM in the preclinical setting and in the

oncology clinic.
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